1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
   | import copy import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch from torch.utils.data.dataset import Dataset from torch.utils.data.dataloader import DataLoader
  class Args():     input_size = 50     hidden_size = 4     output_size = 5     num_layers = 2     batch_size = 16     model_path = "./tpem3_model.pth"
  class MyDataset(Dataset):     def __init__(self, data):         self.data = data         self.len = len(self.data)
           def __getitem__(self, index):         return self.data[index]
      def __len__(self):         return self.len
 
  class LSTM(torch.nn.Module):     def __init__(self, input_size,                            hidden_size,                          output_size,                          num_layers,                           batch_size = 1):          super().__init__()         self.input_size = input_size         self.hidden_size = hidden_size         self.num_layers = num_layers         self.output_size = output_size         self.num_directions = 1          self.batch_size = batch_size
                                                                self.lstm = torch.nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)         self.linear = torch.nn.Linear(self.hidden_size, self.output_size)
      def forward(self, input_seq):         h0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)         c0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)         output, _ = self.lstm(input_seq, (h0, c0))         pred = self.linear(output)         pred = pred[:, -1, :]         return pred
 
  def load_data():     data_csv = pd.read_csv('./tushare_stk_factor_000001.csv',usecols=['close_qfq'],skipfooter=5)     return data_csv
 
  def load_model(model, path):          model.load_state_dict(torch.load(path))     return model
 
  def filer_data(data_csv):     data_csv = data_csv.dropna()       dataset = data_csv.values        dataset = dataset.astype('float32')     dataset = np.flipud(dataset)      max_value = np.max(dataset)       min_value = np.min(dataset)       scalar = max_value - min_value       dataset = list(map(lambda x: x / scalar, dataset))      return dataset,max_value,min_value
 
  def create_dataset(args, dataset):
      train = dataset[:int(len(dataset) * 0.7)]     valid = dataset[int(len(dataset) * 0.7):len(dataset)-args.input_size-args.output_size-1]     test = dataset[len(dataset)-args.input_size-args.output_size-1:]
      def process(dataset, batch_size, shuffle, drop_last):         seq = []         for i in range(len(dataset) - args.input_size - args.output_size):             train_seq = []             train_label = []             for j in range(i, i + args.input_size):                 train_seq.append(dataset[j][0])             for j in range(i + args.input_size, i + args.input_size + args.output_size):                 train_label.append(dataset[j][0])             train_seq = torch.FloatTensor([train_seq])              train_label = np.array(train_label)             train_label = torch.FloatTensor(train_label).view(-1)              seq.append([train_seq, train_label])
                   seq = MyDataset(seq)                  seq = DataLoader(dataset=seq,                          batch_size=batch_size,                          shuffle=shuffle,                          num_workers=0,                           drop_last=drop_last,                          pin_memory=False)          return seq
      tra = process(train, args.batch_size, True, True)     val = process(valid, args.batch_size, True, True)     tes = process(test, args.batch_size, False, False)
      return tra, val, tes
 
  def valid(model, val, criterion):     model.eval()     total_valid_loss = []      for (v_x,v_y) in val:         with torch.no_grad():             pred = model(v_x)         vloss = criterion(pred, v_y)          total_valid_loss.append(vloss.item())     return np.mean(total_valid_loss)
 
  def train(args, tra, val):     train_loss = []     valid_loss = []     best_model = None     max_epoch = 200     min_val_loss = np.inf
      model = LSTM(args.input_size, args.hidden_size, args.output_size, args.num_layers, args.batch_size)          criterion = nn.MSELoss()          optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)               scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[max_epoch/5*3,max_epoch/5*4], gamma=0.1)
           for epoch in range(max_epoch):         if epoch % 50 == 0:             print('-----------Epoch: {}, Loss: {:.5f}-----------'.format(epoch + 1, valid_loss[-1]))                  model.train()          for (t_x,t_y) in tra:                          out = model(t_x)                          loss = criterion(out, t_y)                           optimizer.zero_grad()                          loss.backward()                          optimizer.step()
                   mean_valid_loss = valid(model, val, criterion)
                   valid_loss.append(mean_valid_loss)         if epoch > max_epoch/4 and valid_loss[-1] < min_val_loss:             min_val_loss = valid_loss[-1]             best_model = copy.deepcopy(model)             print('best_model Epoch: {}, Loss: {:.5f}'.format(epoch + 1, min_val_loss))
                   scheduler.step()
 
                torch.save(best_model.state_dict(), args.model_path)     return best_model
 
 
  def test(args, dataset, dtr, model = None):     if model == None:         model = LSTM(args.input_size, args.hidden_size, args.output_size, args.num_layers, 1)         model = load_model(model, args.model_path)          model.eval()               pred = []     real = []     for (seq, target) in dtr:         real.extend(np.array(target, dtype=np.float32).reshape((args.output_size,1)))         with torch.no_grad():             y_pred = model(seq)             pred.extend(np.array(y_pred, dtype=np.float32).reshape((args.output_size,1)))
                plt.plot(range(args.input_size-len(pred),args.input_size),pred, 'r', label='prediction')     plt.plot(dataset[len(dataset)-args.input_size:], 'b', label='real')     plt.legend(loc='best')
  if __name__ == '__main__':     args = Args()     data_csv = load_data()     dataset,max_value,min_value = filer_data(data_csv)     tra, val, tes = create_dataset(args,dataset)     train(args, tra, val)     test(args, dataset, tes)     plt.show()
 
  |